Reg.	No.:		
ixeg.	110	•••••	•

Discipline Specific Core Course

MATHEMATICS

UK2DSCMAT106 - Linear Algebra and Graph Theory

Academic Level: 100-199

Time: 2 Hours(120 Mins)

Max. Marks: 56

Part A.6 Marks:Time 5 Minutes.(Cognitive Level :Remember(RE)/Understand(UN)) Objective Type.1 mark each, Answer all questions

Qn No.		CL	СО
1	Define spanning tree.	RE	4
2	Define degree of a vertex	RE	3
3	Draw a Graph having 4 vertices and 2 edges.	UN	3
	r, -1	UN	1
5	Find $3A$ if $A=egin{bmatrix} 1 & 4 \ 7 & -6 \end{bmatrix}$	UN	2
6	Give an example for null graph with 6 vertices	UN	3

Part B.10 Marks.Time:20 Minutes (Cognitive Level:Understand(UN)/Apply(AP))Two-three sentences.2 marks each.Answer all questions

Qn No.	Question	CL	СО
7	Show that distance between vertices of a connected graph is a metric.	UN	3
8	Write a row equivalent system of the following system of equations $2x+3y=7 \ 3x-2y=4$	UN	1
9	Explain Konisgberg bridge problem and its solution.	ΑP	1
10	Find the characteristic equation of the matrix $\begin{pmatrix} 1 & 2 & 3 \\ 2 & -7 & 1 \\ 0 & 6 & 5 \end{pmatrix}$	AP	2
11	Verify whether the following set of vectors is linearly independent or not. $(0,2,1),(1,3,1),(0,0,2).$	ΑP	4

Part C.16 Marks.Time:35 Minutes.(Cognitive Level :Apply(AP)/Analyse(AN))Short Answer.4 marks each, Answer all 4 questions, choosing among options * within each question

<u></u>	questions, choosing among options * within each question				
Qn No	Question	CL	CO		
12	Compute the Eigen values of the matrix $\begin{bmatrix} 3 & 4 \\ 5 & 2 \end{bmatrix}$ OR B) Define spanning tree. Prove that every connected graph has at least one spanning tree.	АР	2, 4		
13	Find the rank of the matrix $\begin{bmatrix} 1 & 1 & 3 \\ 2 & -7 & 3 \\ 0 & 6 & 5 \end{bmatrix}$ OR B) Draw all the possible spanning trees of the given graph G	АР	2, 3		
	A) Show that the number of vertices of odd degree in a graph is always even ORB) Explain the algorithm for shortest spanning tree with example	AN	3, 4		
	Express the matrix $A = \begin{bmatrix} 2 & 3 & -2 \\ 1 & 3 & 4 \\ -1 & -2 & 3 \end{bmatrix}$ as a sum of symmetric and skew symmetric matrics OR B) Show that if a graph has exactly two vertices of odd degree, then there must be a path joining these two vertices.	AN	1, 3		

Part D.24 Marks.Time: 60 Minutes.(Cognitive Level :Analyse(AN)/Evaluate(EV)/Create(CR)) Long Answer 6 Marks each.Answer all 4 questions choosing among options * within each question

Qn No.		CL	CO
16	A) Define path matrix. Draw a graph having 4 vertices and find its path marix. OR B) Show that a connected graph with n vertices is a tree if and only if it has $n-1$ edges.	AN	2, 4
17	A)	EV	2, 4

Qn No		\mathbf{CL}	CO
110	Calculate the eigen value and eigen vectos of the matrix $egin{bmatrix} 1 & 2 \ 2 & 4 \end{bmatrix}$		
	OR B)		
	Explain adjacency matrix of a graph and list its properties.		
	A)		
	Solve the following using Gauss elimination method		
	$3x + 2y + z = 3 \ 2x + y + z = 0 \ 6x - 2y + 4z = 6.$		
18	OR B)	EV	2, 2
	Find the characteristic equation of the matrix $A=\begin{bmatrix}2&-1&3\\1&4&2\\3&-1&2\end{bmatrix}$. What is the characteristic equation of A^T .		
	A)		
19	If $A(G)$ is an incidence matrix of a connected graph G with n vertices, then prove that the rank of $A(G)$ is $n-1$. OR B) Compute the Eigen value and its multiplicity for the matrix $B = \begin{bmatrix} -2 & 2 & -3 \\ 2 & 1 & -6 \\ -1 & -2 & 0 \end{bmatrix}$	CR	4, 2